上海 回到官网首页下载APP

高一数学必修2集合公式

       高一数学必修2集合公式, 高中同学面对高考有哪些办法,轻轻家教为大家搜集信息如下,希望对您有所帮助。

    高一数学必修2集合公式

  特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线) 柱体、锥体、台体的体积公式

  球体的表面积和体积公式:V= ; S=

  1空间点、直线、平面之间的位置关系1 平面含义:平面是无限延展的2 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.符号表示为A∈LB∈L => L αA∈αB∈α公理1作用:判断直线是否在平面内.

  (2)公理2:过不在一条直线上的三点,有且只有一个平面。符号表示为:A、B、C三点不共线 => 有且只有一个平面α,使A∈α、B∈α、C∈α。公理2作用:确定一个平面的依据。

  (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。符号表示为:P∈α∩β =>α∩β=L,且P∈L公理3作用:判定两个平面是否相交的依据.

  .2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。2 公理4:平行于同一条直线的两条直线互相平行。符号表示为:设a、b、c是三条直线a∥bc∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。公理4作用:判断空间两条直线平行的依据。

  3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.

  4 注意点:① a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为了简便,点O一般取在两直线中的一条上;

  ② 两条异面直线所成的角θ∈(0, );

  ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;

  ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;

  ⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

  2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系

  1、直线与平面有三种位置关系:(1)直线在平面内 —— 有无数个公共点

  (2)直线与平面相交 —— 有且只有一个公共点

  (3)直线在平面平行 —— 没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示a α a∩α=A a∥α

  2.2.直线、平面平行的判定及其性质

  2.2.1 直线与平面平行的判定1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

  简记为:线线平行,则线面平行。

  符号表示:a αb β => a∥αa∥b

  2.2.2 平面与平面平行的判定1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。符号表示:a βb βa∩b = P β∥αa∥αb∥α

  2、判断两平面平行的方法有三种:(1)用定义;(2)判定定理;(3)垂直于同一条直线的两个平面平行。

  2.2.3 — 2.2.4直线与平面、平面与平面平行的性质1、直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。简记为:线面平行则线线平行。符号表示:a ∥αa β a∥bα∩β= b作用:利用该定理可解决直线间的平行问题。

  2、两个平面平行的性质定理:如果两个平行的平面同时与第三个平面相交,那么它们的交线平行。符号表示:α∥βα∩γ= a a∥b β∩γ= b作用:可以由平面与平面平行得出直线与直线平行2.3直线、平面垂直的判定及其性质

  2.3.1直线与平面垂直的判定1、定义:如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。如图,直线与平面垂直时,它们唯一公共点P叫做垂足。

  P a L2、直线与平面垂直的判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

  注意点: a)定理中的“两条相交直线”这一条件不可忽视;

  b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。

  2.3.2平面与平面垂直的判定1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形A 梭 l βB  α2、二面角的记法:二面角α-l-β或α-AB-β3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。

  2.3.3 — 2.3.4直线与平面、平面与平面垂直的性质1、直线与平面垂直的性质定理:垂直于同一个平面的两条直线平行。

  2、两个平面垂直的性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。第三章 直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

  2、两个平面垂直的性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。第三章 直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

  (2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。当直线l与x轴平行或重合时, α=0°, k = tan0°=0;当直线l与x轴垂直时, α= 90°, k 不存在.当时,; 当时,; 当时,不存在。②过两点的直线的斜率公式: ( P1(x1,y1),P2(x2,y2),x1≠x2)

  注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;

  (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

  (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

  (3)直线方程

  ①点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

  ②斜截式:,直线斜率为k,直线在y轴上的截距为b

  ③两点式:()直线两点,

  ④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。

  ⑤一般式:(A,B不全为0)

  注意:1各式的适用范围

  2特殊的方程如:平行于x轴的直线:(b为常数); 平行于y轴的直线:(a为常数); (6)两直线平行与垂直当,时,

  ;注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。

  (7)两条直线的交点 相交交点坐标即方程组的一组解。方程组无解 ; 方程组有无数解与重合

  (8)两点间距离公式:设是平面直角坐标系中的两个点,则

  (9)点到直线距离公式:一点到直线的距离(10)两平行直线距离公式已知两条平行线直线和的一般式方程为:,

  :,则与的距离为1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

  2、圆的方程(1)标准方程,圆心,半径为r;

  点与圆的位置关系:当>,点在圆外

  当=,点在圆上

  当<,点在圆内

  (2)一般方程当时,方程表示圆,此时圆心为,半径为

  当时,表示一个点; 当时,方程不表示任何图形。3)求圆方程的方法:一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:

  (1)设直线,圆,圆心到l的距离为 ,则有;;(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】

  (3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2 4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含; 当时,为同心圆。注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线 圆的辅助线一般为连圆心与切线或者连圆心与弦中点

          轻轻家教与您分享高一数学必修2集合公式,感谢您的观看!如果还有其他问题可以拨打免费电话:4000-766-177!或者关注轻轻家教官方公众号:changingedu 名师为您在线答疑!还有更多学习资料、升学宝典等着你!
 
   
注:原文章转载于 ,如有问题请联系我们,邮箱songchunlin@changingedu.com

优秀老师 为您而选

轻轻有着严苛的教师选聘制度,每个合作老师都经过严格的资质审核、笔试和面试。

查看更多好老师

选择城市

以上没有您的城市?可以点击选择其他城市

请验证手机号登录/注册
获取验证码
登录领取

轻轻助手

快速找个好老师