乘法原理练习7
求360共有多少个不同的约数。
分析与解:先将360分解质因数,
360=2×2×2×3×3×5,
所以360的约数的质因数必然在2,3,5之中。为了确定360的所有不同的约数,我们分三步进行:
第1步确定约数中含有2的个数,可能是0,1,2,3个,即有4种可能;
第2步确定约数中含有3的个数,可能是0,1,2个,即有3种可能;
第3步确定约数中含有5的个数,可能没有,也可能有1个,即有2种可能。
根据乘法原理,360的不同约数共有
4×3×2=24(个)。
由此题得到:如果一个自然数N分解质因数后的形式为
其中P1,P2,…,Pl都是质数,n1,n2…,nl都是自然数,则N的所有约数的个数为:
(n1+1)×(n2+1)×…×(nl+1)。
利用上面的公式,可以很容易地算出某个自然数的所有约数的个数。例如,11088=24×32×7×11,11088共有不同的约数
(4+1)×(2+1)×(1+1)×(1+1)=60(个)。
轻轻家教与您分享 , 感谢您的观看!如果还有其他问题可以拨打免费电话:4000-766-177!或者关注轻轻家教官方公众号:changingedu 名师为您在线答疑!还有更多学习资料、升学宝典等着你!