上海 回到官网首页下载APP

小学奥数奇偶分析习题(十五)

小学奥数奇偶分析习题(十五),轻轻家教为大家整理相关信息如下,希望对您有所帮助。

  1.能否将1至25这25个自然数分成若干组,使得每一组中的最大数都等于组内其余各数的和?


  2.在象棋比赛中,胜者得1分,败者扣1分,若为平局,则双方各得0分。今有若干个学生进行比赛,每两人都赛一局。现知,其中有一位学生共得7分,另一位学生共得20分,试说明,在比赛过程中至少有过一次平局。


  3.在黑板上写上1,2,…,909,只要黑板上还有两个或两个以上的数就擦去其中的任意两个数a,b,并写上a-b(其中a≥b)。问:最后黑板上剩下的是奇数还是偶数?


  4.设a1,a2,…,a64是自然数1,2,…,64的任一排列,令b1=a1-a2,b2=a3-a4,…,b32=a63-a64;


  c1=b1-b2,c2=b3-b4,…,c16=b31-b32;


  d1=c1-c2,d2=c3-c4,…,d8=c15-c16;


  ……


  这样一直做下去,最后得到的一个整数是奇数还是偶数?


  答案:


  1.不能。提示:仿例3。


  2.证:设得7分的学生胜了x1局,败了y1局,得 20分的学生胜了x2局,败了y2局。由得分情况知:


  x1-y1=7,x2-y2=20。


  如果比赛过程中无平局出现,那么由每人比赛的场次相同可得x1+y1=x2+y2,即x1+y1+x2+y2是偶数。另一方面,由x1-y1=7知x1+y2为奇数,由x2-y2=20知x2+y2为偶数,推知x1+y1+x2+y2为奇数。这便出现矛盾,所以比赛过程中至少有一次平局。


  3.奇数。解:黑板上所有数的和S=1+2+…+909是一个奇数,每操作一次,总和S减少了a+b-(a-b)=2b,这是一个偶数,说明总和S的奇偶性不变。由于开始时S是奇数,因此终止时S仍是一个奇数。


  4.偶数。


  解:我们知道,对于整数a与b,a+b与a-b的奇偶性相同,由此可知,上述计算的第二步中,32个数


  a1-a2, a3-a4,…,a63-a64,


  分别与下列32个数


  a1+a2, a3+a4,…,a63+a64,


  有相同的奇偶性,这就是说,在只考虑奇偶性时,可以用“和”代替“差”,这样可以把原来的计算过程改为


  第一步:a1,a2,a3,a4,…,a61,a62,a63,a64;


  第一步:a1+a2,a3+a4,…,a61+a62,a63+a64;


  第三步:a1+a2+a3+a4,…,a61+a62+a63+a64;


  ……


  最后一步所得到的数是a1+a2+…+a63+a64。由于a1,a2,…,a64是1,2,…,64的一个排列,因此它们的总和为1+2+…+64是一个偶数,故最后一个整数是偶数。

轻轻家教与您分享 , 感谢您的观看!如果还有其他问题可以拨打免费电话:4000-766-177!或者关注轻轻家教官方公众号:changingedu 名师为您在线答疑!还有更多学习资料、升学宝典等着你!

注:原文章转载于 ,如有问题请联系我们,邮箱zixun@changingedu.com

优秀老师 为您而选

轻轻有着严苛的教师选聘制度,每个合作老师都经过严格的资质审核、笔试和面试。

查看更多好老师

选择城市

以上没有您的城市?可以点击选择其他城市

请验证手机号登录/注册
获取验证码
登录领取

轻轻助手

快速找个好老师